Challenges for an integrated strategy of gene banking for farm animals in Europe

Michèle Tixier-Boichard,
INRA, AgroParisTech,
Animal Genetics and Integrative Biology
Jouy-en-Josas, France
Outline

➢ From gene banks to biological resource centers
 an infrastructure approach, CRB-Anim in France

➢ Challenges for gene banks as experienced in CRB-Anim
 ➢ Addressing a range of species
 ➢ Coupling genomic and reproductive material
 ➢ Facilitating access to gene banks

➢ European initiatives
An infrastructure for gene banking

Genetic diversity: a heritage and a resource for the future to meet societal challenges

Genomics
 Genome an archive of population history & the basis of phenotype prediction

Cryobanks (ex situ/in vitro) complementary to in situ management

Documented biological samples

Progress in reproductive biotechnologies

Connect reproductive and genomic biobanks → Biological Resource Center
From a gene bank to a BRC

✓ Objectives of gene banks
 breed preservation/back up/reconstruction
 combined *ex situ* / *in situ* management of genetic resources
 monitoring genetic changes,
 creating new breeds
 research

✓ Requirements
 provide traceability, safety, comply with sanitary regulations
 improve practices and technologies, propose standards,
 disseminate information, facilitate distribution with clear rules (IP)

// core missions of a Biological Resource Center:
Collect/Characterize/Secure/Distribute biological samples
CRB-Anim
An integrated infrastructure of French gene banks for domestic animals

- WP1: coordination, scientific committee, stakeholders committee, access rules and fares, communication
- WP2: technological developments, genomics, reproductive biotechnologies
- WP3: collections enrichment
 8900 donor animals, 22 species, semen, embryos, cells, DNA; ~350 000 samples
- WP4: information system, Web portal, quality certification
- WP5: characterization of collections
- WP6: training (academic, professional, continuous,)
- WP7: economic exploitation: support to livestock sector, genetic models and diagnostic tests, biotech process

6 partners
11 M€
Challenge 1: addressing a range of species

- **Species-specific issues**
 - Biology of reproduction → sampling and storing procedures
 - Selection history → sampling rules
 - Legal organisation → sanitary regulations, property issues
 - Breeders’ attitude → willingness to contribute to gene banking

- **Main difficulties encountered**
 - Local breeds cannot generally comply with regulations aimed at securing exports of reproductive material made for transboundary breeds
 - Cost of using gene bank material: logistics, know-how
 - Very variable fertility rate obtained from gene bank material

⇒ The endangered breeds are often the main motivation for gene banking but they encounter the most technical difficulties to benefit from gene banks
Variability of fertility and consequences for sampling: exemple in chickens

Blesbois et al., 2007

Number of straws to restore the line (n=40) to 97-98% identity after backcrossing

473 973 492 536
To answer these issues: improve methods to use cells with reproductive potential from gene banks

Main critical points:

- Reproductive potential of cryopreserved cells
- Safety conditions (storage media)
- Epigenome integrity following cryopreservation

Cells/tissues concerned: (from oyster to horses, The « difficult » cases)

- Mature gametes (semen)
- Embryos and larvae
- Diploïd germ cells (isolated or in gonadic tissus)
- Somatic cells and tissues

To be reprogrammed in germ cells
Current approaches to improve predictability of fertility results of frozen semen for chickens

Find a fast, reliable and simple method for fertility screening

- **Pilot study with proteomics**: Labas et al., 2014
 - Intact cell MALDI-TOF mass spectrometry (ICM-MS) = fast, reliable and relatively inexpensive tool to **phenotype male chicken fertility**
 - Molecular basis of infertility

1- Use of ICM-MS in a larger rooster population including different genetic backgrounds
 ⇒ **reproductive phenotyping**
2- Identify and characterize biomarkers
 Linked to fertility ⇒ **fertility molecular signatures**
Challenge 2: Coupling genomic and reproductive material

DNA banks and reproductive gene banks are poorly connected

➢ Many advantages
 - Enhance knowledge about gene bank collections
 - Assess their representativness
 - Enhance the scientific value of collections
 - Including the characterization of genetic defects
 - Marker-assisted sampling/marketer-assisted use
 - Refine the choice of animals on the basis of genotypes

➢ Major difficulties
 - Genotyping cost (lower cost/marker)
 - Data sharing policy
 - Database interoperability, standard descriptors
Assessing Representativeness

Ex: NJ tree on wild Gallus

57K SNP chip

Choosing animals for further study &/or sampling

Domesticchick project
Enhancing the scientific value of gene bank collections

Screening a DNA bank to identify an IBD region for a genetic defect

Candidate region from linkage analysis

Mb scale

- Genotyping or partial sequencing of the candidate region
- In carriers animals

Find a common region

Scan non carrier populations

Final interval: kb scale
Trace the history of a recessive mutation

Carrier bull of a genetic defect

Storing DNA and semen in a BRC

Candidate mutation

Produce carriers to study the mode of action

Develop a genetic test

Check other gene banks’ collections

Modify the population management

French National Observatory for cattle genetic defects
Coupling gene banks: agree on common descriptors

- Contact
 Biological Resource Center
- Species/breed/line
- ABS information
 Specific regulatory issues
- Sanitary information
- Associated publication(s)
- Associated project(s)
- Animal
- Sample
- Conditions of access
- Phenotypic data
- Environmental data
- Genetic data
 (genealogy, selection history)
- Molecular data
- Other associated data
 (physiological stage at sampling)
- Material type
 (tissue, sampling protocol)
- Quality control
- Storage information

+ To agree on thesaurii ontologies

ABS information
Specific regulatory issues
Sanitary information
Associated publication(s)
Associated project(s)
Animal
Sample
Conditions of access
Phenotypic data
Environmental data
Genetic data
(genealogy, selection history)
Molecular data
Other associated data
(physiological stage at sampling)
Material type
(tissue, sampling protocol)
Quality control
Storage information
Challenge 3: Facilitating access to gene banks

- Provide easy access to useful information: [web portal] to search for desired samples
 - define options/criteria with users’ groups
 - Main request will rely on species/aim/type of material

- Provide clear rules for entry/distribution of samples
 - Rely on a quality management system

- A demonstration project of CRB-Anim on local pig breeds
Flow of samples

- **Technological R&D**
 - Omics-technologies
- **Genomic BRCs**
- **Reproductive BRCs**
- **Technological R&D**
 - Cryobiology

Coupling of collections

- **Web portal**
- **Breeders organizations**
 - Nat Vet Schools
 - hospitals
 - Biotech companies
- **Samples**: DNA, blood, tissues
- **Research laboratories**
- **Samples**: Semen, embryos, cell

Technological R&D

- **Genomic BRCs**
- **Reproductive BRCs**
- **Technological R&D**
 - Cryobiology

Flow of samples
What is Quality? Why do we need it in a gene bank?

Quality system

- Guarantee traceability
- Transparency of procedures
- Satisfaction of user and of BRC staff

Customers requests

Products and services

Satisfy requirements of customers
BRC quality management system

Management process
- Management
- Continual improvement: internal audit, monitoring and measurement

Realization process
- Sampling
- Reception Registration
- Treatment Conditioning Storage
- Distribution Delivery

Support process
- IT support Web site
- Material resources: Equipments, finances, biosecurity, documentation
- Human resources Training
- Dissemination Exploitation

Requirements

Satisfaction
Using a gene bank: a demonstration project with French pig local breeds
Trends in inbreeding

Storage of frozen semen
Current results

- Using ‘ancient’ frozen semen
 - **Cul Noir Limousin**, 4 boars
 - Round 1: 42% of IA were successful
 - Round 2: 62%
 - 7.2 born alive / litter, 4.7 weaned
 - **Gascon** (3 boars)
 - Round 1: 33%
 - Round 2: 50%
 - 5 born alive / litter, 2.7 weaned

- New entry of frozen semen in the gene bank
 - **Cul Noir Limousin**: 2 boars, 162 doses
 - **Gascon**: 2 boars (on-going)
From a national network of Gene banks to a European Network

CRB-Anim: 2 BRC for reproductive material of different species (farm/dogs)

4 BRC for genomic material with some species in common

mostly ‘specialized BRC’

sharing procedures, information, defining a common portal: effort!

impact on distributing samples: not yet!

European level: **EUGENA initiative of the European Focal Point**

a European gene banks network

😊 same range of species, same biological and genetic issues

😊 same interest in coupling reproductive/genomic gene banks

😊 in sharing technical solutions, miror collections

😊 **complex governance**: national policy / autonomy of decision

😊 **legal issues**, different property rules, different funding rules
Goals and objectives of the European project IMAGE (submitted)

→ to **upgrade animal gene bank management through genomics and bio-informatics**

to demonstrate the benefits brought by gene banks to the development of more sustainable livestock production systems, by:

• **Enhancing the usefulness of existing genetic collections** to allow the livestock sector to respond to new environmental constraints and market needs while minimising genetic accidents such as abnormalities or loss of genetic variability

• **Optimising complementarity between ex situ and in situ conservation** to maximise resources for the future.

28 partners 3 SMEs, 3 NGOs, FAO, 9 research institutions, 11 higher education and research, INRA Transfert.
13 EU countries + Switzerland + Argentina, Columbia, Egypt, Morocco
IMAGE: breakdown of activities into 8 main WP

- WP1: Multi-actor approach
- WP2: Gene bank functioning
- WP3: Reproductive technologies
- WP4: Genomic characterisation
- WP5: Information system
- WP6: Use of genetic collections
- WP7: Outreach
- WP8: Management

Stakeholders:
- CRB-Anim WP4
- CRB-Anim WP2.2
- CRB-Anim WP5,
 ++ Bio-Info
- CRB-Anim WP6
 ++ Methods
- CRB-Anim WP7

EUGENA
Conclusions

➢ Promote a dynamic management of gene banks
 o Developing complementarity between *in vitro*/*in situ* conservation is more valuable than « storing without using »
 o Reintroducing diversity in selected populations, to monitor inbreeding is currently more cost-effective than breed restoration because of limited or unpredictable efficiency of reproductive technologies in many species
 o Innovative uses: combine old and new genotypes for new needs?

➢ To achieve this: cooperation is needed between gene banks
 ➢ Develop standard procedures, explain rules of access
 ➢ Share data and metadata thanks to web tools
 ➢ Funding needed: H2020, genetic resources focus group discussion
Acknowledgements

Nicolas Coudert, Président du LIGERAL
Marie-José Mercat, IFIP,

Coralie Danchin-Burge, Idele,
Delphine Duclos, Idele, National Cryobank

Aurélie Delavaud, FRB,
Sylvain Marthey, INRA

Elisabeth Blesbois, INRA
Aurore Thélie, INRA
Laura Soler Vasco, INRA, Agreenskills

Maelle D’Arbaumont, INRA

All members of CRB-Anim