Slaughter related factors and season and their effect on boar taint in Belgian pigs

Evert Heyrman
S. Millet, F. Tuyttens, B. Ampe, S. Janssens, N. Buys, J. Wauters, L. Vanhaecke, M. Aluwé
31/08/2015
Introduction

• 2018: ban on castration ➔ problem: boar taint
• Previous research (CASPRAK): variation between farms

1. Variation within farms?
2. Relation with risk factors?
Method

<table>
<thead>
<tr>
<th>Level</th>
<th>Constraint</th>
<th>N</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm</td>
<td>-</td>
<td>34</td>
<td>-</td>
</tr>
<tr>
<td>Slaughter batch</td>
<td>Min. 2/farm</td>
<td>78</td>
<td>Time of transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time in lairage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Season</td>
</tr>
<tr>
<td>Boar</td>
<td>Min. 50/slaughter batch</td>
<td>9167</td>
<td>Skin lesions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carcass weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lean meat %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Boar taint score</td>
</tr>
</tbody>
</table>
Boar taint detection method

- Hot iron method
- 8-point scale:
 - 0 – 1 – 1.5 – 2 – 2.5 – 3 – 3.5 – 4
- Minimum of 2 expert scores per sample
- Median of expert scores as final score
- Cutoff 1.5 for final score ➔ positive for boar taint
Statistical analysis

- Univariate linear mixed binomial models for parameters
- 0/1 = negative/positive for boar taint
- Farm, slaughterhouse and slaughter batch as random factors

\[
\log \left(\frac{p}{1 - p} \right) = \alpha + \beta \cdot X + \epsilon \quad p = P(\text{boar taint})
\]

Odds ratio = \(P(\text{boar taint}) / P(\text{no taint}) \)
Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin lesions</td>
<td>0.017</td>
</tr>
<tr>
<td>Lean meat %</td>
<td><0.001</td>
</tr>
<tr>
<td>Season</td>
<td>n.s.</td>
</tr>
<tr>
<td>Carcass weight</td>
<td>n.s.</td>
</tr>
<tr>
<td>Time of transport</td>
<td>n.s</td>
</tr>
<tr>
<td>Time in lairage</td>
<td>0.051</td>
</tr>
</tbody>
</table>
$P(\text{Boar taint})$
$P(\text{Boar taint})$

The diagram shows a distribution of lean meat percentage (%) with a decreasing probability of boar taint as the lean meat percentage increases. The histogram indicates a higher frequency of lean meat percentages around 65%, while the smooth curve represents the probability $P(\text{Boar taint})$ as a function of lean meat percentage.
The graph shows the frequency distribution of time in lairage (min) with a linear trend line indicating the probability of boar taint ($P(\text{Boar taint})$) over time. The inset histogram illustrates the frequency distribution of time intervals.
Discussion

• Skin lesions linked with SKA and IND concentrations (gut function)1
• Lean meat percentage has been linked with boar taint compounds2
• Pre-unloading time and duration of transport have been linked with AND, SKA and IND1

1 Wesoly et. al. 2015
2 Mörlein et. al. 2015
Conclusions

• Factors associated with slaughter moment at least partly related to boar taint prevalence
• (Undergoing) aggression *(more skin lesions)* during transport or in lairage is linked with *higher* chance of a tainted carcass
• **Leaner carcasses** have a *lower* chance of being tainted
• **Longer in lairage** linked with *higher* chance for boar taint
Questions?

Evert Heyrman
evert.heyrman@ilvo.vlaanderen.be

Institute for agricultural and fisheries research (ILVO)
9090 Melle – Belgium
T +32 (0)9 272 26 00
F +32 (0)9 272 26 01

www.ilvo.vlaanderen.be