Slowly Fermentable Grains May Reduce Metabolic Heat and Ameliorate Heat Stress in Grain-Fed Sheep

Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.
*Department of Economic Development, Jobs, Transport and Resources, Ellinbank, Victoria, Australia.
• Ruminants can be more susceptible to **Heat stress** (Coppock, 1985; Goetsch and Johnson, 1999; Roy and Collier, 2012).

• Rapidly fermentable grains (**wheat**); digestive disorders, laminitis and higher metabolic heat **production** (Nocek, 1997; Oetzel and Smith, 2000; Stone, 2004, Grant and Albright, 1995; Brosh et al., 1998; Mader et al., 1999).

• Slowly fermentable grains (**corn**); better utilization of ME and reduction of the heat from fermentation (Ørskov, 1986; Owens et al., 1986).
Objectives

• To characterise the *in vitro* gas production kinetic parameters of wheat and corn grains.
• To compare physiological parameters of sheep fed either *slowly* or *rapidly* fermentable grain-based diets under heat stress conditions.

Hypotheses

• Wheat has a faster rate of *in vitro* fermentation than corn.
• Feeding *slowly fermentable grains* can reduce the impact of heat stress in grain-fed sheep.
In Vitro Experiment

- 28 replicates of 1g of 1mm-ground wheat ASW 10% (70% starch) and corn (74% starch).
- Buffered rumen fluid (Kansas-State buffer pH 6.8) ratio 1:3
- Gas recording modules ANKOMRF Wireless system every 5 minutes
- Incubated for 24 h at 39°C
In Vivo experiment

Experimental Design
Randomized Control Trial

Animals
- 22 Merino X Poll Dorset crossbred wether lambs.
- 11-12 mo
- 41.2±2.4 Kg BW
- Fleece cover 3 cm
Diets

- **Control - rapidly fermentable diet** “Wheat Diet”
 50% crushed wheat grain + 50% of oaten/lucerne chaff

- **Intervention - slowly fermentable diet** “Corn Diet”
 50% crushed corn grain + 50% of oaten/lucerne chaff

Both: 4% DM Balanced Supplement
12.7 % CP, 11.9 MJ ME/Kg DM,
23.8% NDF and 37.9% starch
Fed three times a day (0900, 1300, 1700h)
Accl. (15 d)

- **Acclimation feeding** (1.5 x Maintenance requirements)

Period 1 (P1, 7d)

- **Thermoneutral** (18 to 21°C and 40-50% RH, 24 h)
- **Restrictive feeding** (1.3 x Maintenance requirements)

Period 2 (P2, 7d)

- **Heat stress** (38°C/ 30% RH; 0900 to 1700 h, 28°C/50% RH;1700 to 0900 h)
- **Restrictive feeding** (1.3 x Maintenance requirements)

Period 3 (P3, 7d)

- **Heat stress** (38°C/ 30% RH; 0900 to 1700 h, 28°C/ 50% RH;1700 to 0900 h)
- **Acclimation feeding** (1.5 x Maintenance requirements)
• Respiration rate (RR)

• Rectal temperature (RT)

• Left and right flank skin temperature (LST and RST)
 • 0900, 1300, 1700 and 2100h during the experiment.

• Feed /water intake
In vitro gas production

- Gas production curve was fitted to the Gompertz model. REML using the statistical package GenStat (GenStat release 14; VSN International Ltd., Hemel Hempstead, UK)

\[Y = A + C \exp \left(-\exp \left(-B(X-M) \right) \right) \]

Where:
- \(B \) = Rate of gas production (mL h\(^{-1}\))
- \(M \) = Time at which the maximum rate of gas production is reached (h)
- \(C \) = Maximum gas produced (Max \(_{\text{gas}}\) mL/g DM)
- \(A \) = Y-intercept
In vivo experiment

- Restricted Maximum Likelihood (REML) analysis procedure for GenStat

- True differences between left and right flank skin temperature were estimated by conducting a t-Test.
Corn had slower rate of gas production (ml gas h$^{-1}$) than wheat ($P<0.001$). Wheat reached the maximum rate of gas production earlier than corn ($P<0.001$).

- Protein Matrix
- Amylose content
- Resistance to bacterial enzymatic attack

![Graph showing gas production over time for Corn (74% Starch) and Wheat (70% Starch).](image)

- Max Rate 6.8 h for Wheat
- Max Rate 8.7 h for Corn
Heat stress increased RR ($P<0.001$) and corn-fed sheep had lower RR across periods ($P<0.001$).

Graph:
- **Respiration Rate, breaths per minute**
- **Conditions:**
 - Thermoneutral (P1, 1.3 x M)
 - Heat Stress (P2, 1.3 x M)
 - Heat Stress (P3, 1.5 x M)
- **Species:**
 - Corn
 - Wheat
Corn-fed sheep showing lower RR at 38°C/30% RH
Heat stress increased RT ($P<0.001$), Corn-fed sheep had lower RT at high ambient temperature ($P<0.001$).
Skin temperature increased with heat stress ($P < 0.001$). Corn-fed sheep had lower skin flank temperature ($P < 0.001$). LST was higher than RST ($P < 0.001$).
Wheat-fed sheep had larger difference between left and right flank skin temperature ($P<0.001$)

(Laue and Petersen, 1991; Montanholi et al., 2008)
CONCLUSION

• Corn grain had slower fermentation rate than wheat grain
• Feeding a corn-based diet reduced the total heat increment.
• Corn grain diet ameliorated the physiological responses negatively affected by HS in grain-fed sheep compared to dietary wheat.
• Higher feed intake increased the thermal load of the animals under HS.
ACKNOWLEDGMENTS

• Faculty of Veterinary and Agricultural Sciences, The University of Melbourne

• Animal Science group, animal house Parkville and Dookie campus staff

Dr. Surinder Chauhan, Ms Maree Cox, Mr Evan Bittner, Ms Shannon Holbrook, Dr. Michelle Henry, Ms Paula Giraldo, Mr Ashley Gabler, Mr Frank O’Connor.