Effects of the diet form on health and performance of weaning or fattening pigs

E. Royer, D. Gaudré, N. Quiniou
IFIP-Institut du porc, France

66th EAAP meeting
S.14 Customised nutrition taking into account the health status of farms and individual animals
Objectives

Lack of recent results about effect of feed form…
- Pelleting: \uparrow digestibility, \downarrow F:G
- Interaction with on-farm conditions, health status…?

4 trials carried out to study …
- the effect of dietary presentation on performance and health:
 \Rightarrow a solution to reduce post weaning diarrhea?
- effect of pelleting on performance of restrictively fed pigs:
 - interaction with sex (gilts (G) vs. castrated males (CM))
 - boar taint risk in entire males (EM)
- comparison of dry meal, pellets, liquid feeding
 - interaction with feeding level and season
Trial 1: weaned pigs
Experimental design

- **Animals & design**
 - 524 weaned piglets *(28 d, 9.0 kg)* in 2 batches
 - *(LWxLd) x (LWxPietrain)*

- **Feeds**

<table>
<thead>
<tr>
<th>Period</th>
<th>d 0 - 14</th>
<th>d 15 - 41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeding</td>
<td>Ad libitum</td>
<td></td>
</tr>
<tr>
<td>Composition</td>
<td>cereals, whey, proteins</td>
<td>wheat, barley, wheat feed meal, soybean & rapeseed meals</td>
</tr>
<tr>
<td>Net energy*, MJ/kg</td>
<td>10.7</td>
<td>9.6</td>
</tr>
<tr>
<td>Lysine dig*, g/kg</td>
<td>13.0</td>
<td>11.5</td>
</tr>
</tbody>
</table>

- **Treatments**
 - meal vs pellets
 - standard (cleaned room, 0.33 m²/p) vs poor sanitary conditions (uncleaned, 0.26 m²/p)

*Estimated from chemical composition of ingredients and Evapig ®

August 31, 2015
Trial 1: weaned pigs
Results over the 41-d period

DFI g/d
1000
900
800
700
600
500
standard
poor conditions

ADG g/d
600
550
500
450
400
350
300
standard
poor conditions

FCR
2.00
1.90
1.80
1.70
1.60
1.50
1.40
standard
poor conditions
Trial 1: weaned pigs
Results over the 41-d period

Fecal score

- Meal standard
- Meal poor
- Pellets standard
- Pellets poor

Days

0 10 20 30

Form* San*

0.2 0.4 0.6

August 31, 2015
Trials 2 & 3: growing pigs

Experimental design

- **(LW x Ld) x (LW x Pietrain) pigs**
- **Restricted feeding level**
- **meal vs ground pellets with liquid feeding system**

Feedstuffs

<table>
<thead>
<tr>
<th>Trial</th>
<th>n / sex</th>
<th>Feedstuffs</th>
<th>Nutritional values*</th>
<th>BW, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 x 120 G+CM</td>
<td>wheat, barley, peas, rapeseed+soybean+sunflower meal</td>
<td>EN, MJ Lys. dig, g</td>
<td>9.65 8.3</td>
</tr>
<tr>
<td>3</td>
<td>80 EM</td>
<td>wheat, barley, soybean+rapeseed meal</td>
<td>EN, MJ Lys. dig, g</td>
<td>9.6 9.2</td>
</tr>
</tbody>
</table>

Estimated from chemical composition of ingredients and Evapig ®
Trials 2 & 3: growing pigs

Results

Trial 2 (G+CM)

- DFI g/d
- ADG g/d
- FCR

Note:
- Sx* indicates significant difference between genders.
- Form** indicates significant difference between forms.
- a, b indicate specific group differences.
Trials 2 & 3: growing pigs

Results

 Trial 2 (G+CM)

- Lower effect of feed form for gilts?
 - Pellets ➔ carcass yield (+1%, P<0.01)
 - & carcass leanness (+0.4%, P=0.09)
- Health parameters ➔ similar

comments
Trials 2 & 3: growing pigs

Results

Trial 3 (EM)

Growth and carcass parameters

<table>
<thead>
<tr>
<th></th>
<th>Meal</th>
<th>Pellets</th>
<th>Stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFI, kg/d</td>
<td>1.98</td>
<td>1.95</td>
<td>t</td>
</tr>
<tr>
<td>ADG, g/d</td>
<td>882</td>
<td>882</td>
<td>NS</td>
</tr>
<tr>
<td>FCR</td>
<td>2.26</td>
<td>2.20</td>
<td>*</td>
</tr>
<tr>
<td>Dressing %</td>
<td>76.5</td>
<td>77.3</td>
<td>NS</td>
</tr>
<tr>
<td>Muscle %</td>
<td>61.9</td>
<td>62.0</td>
<td>NS</td>
</tr>
</tbody>
</table>
Trials 2 & 3: growing pigs

Results

Trial 3 (EM)

Growth and carcass parameters

<table>
<thead>
<tr>
<th></th>
<th>Meal</th>
<th>Pellets</th>
<th>Stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFI, kg/d</td>
<td>1.98</td>
<td>1.95</td>
<td>t</td>
</tr>
<tr>
<td>ADG, g/d</td>
<td>882</td>
<td>882</td>
<td>NS</td>
</tr>
<tr>
<td>FCR</td>
<td>2.26</td>
<td>2.20</td>
<td>*</td>
</tr>
<tr>
<td>Dressing %</td>
<td>76.5</td>
<td>77.3</td>
<td>NS</td>
</tr>
<tr>
<td>Muscle %</td>
<td>61.9</td>
<td>62.0</td>
<td>NS</td>
</tr>
</tbody>
</table>

- P = 0.01

% of boars with [skatole] back fat < or > 30 ng/g
Trial 4: growing pigs

Experimental design

- **(LW x Ld) x Pietrain**
- **4 x 120 (G+CM)**
- **Dry meal vs Dry Pellets vs Liquid Feed**

<table>
<thead>
<tr>
<th>Season</th>
<th>Feeding strategy</th>
<th>Feedstuffs</th>
<th>Nutritional value *, /kg</th>
<th>BW, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initial</td>
</tr>
</tbody>
</table>
| Summer | Ad libitum → plateau | wheat, corn, rapeseed + soybean+ sunflower meals | EN: 9.6 MJ
Lysine dig. :
- growing: 8.7 g
- finishing: 7.7 g | 28.4 | 114.5 |
| Winter | Pair fed | wheat, barley, soybean + sunflower meals | | 28.7 | 115.9 |
| Winter | Ad libitum → plateau | wheat, triticale, rapeseed + soybean + sunflower meals | | 29.2 | 112.1 |
| Summer | Pair fed | wheat, barley, soybean + sunflower meals | | 29.3 | 116.0 |

Estimated from chemical composition of ingredients and Evapig ®
Effects of meal, pellets and liquid feed

Results of Exp.4

![Graph showing the effects of meal, pellets, and liquid feed on DFI kg/j for growing and finishing stages with different feeding methods.](image)
Effects of meal, pellets and liquid feed

Results of Exp.4
Effects of meal, pellets and liquid feed

Results of Exp.4

![Bar chart showing FCR kg/kg for different feed forms and feeding methods in growing and finishing stages.](image)
Effects of meal, pellets and liquid feed

Results of Exp.4

- Gilts ⇒ similar muscle %
- Barrows with liquid feed ⇒ leanness ⇒ fat depth
- Health parameters ⇒ similar
Discussion: Feed Conversion Ratio

<table>
<thead>
<tr>
<th>Trial</th>
<th>Feeding strategy</th>
<th>Dry meal ⇒ pellets</th>
<th>Liquid meal ⇒ pellets</th>
<th>Dry ⇒ liquid meal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ad libitum</td>
<td>-10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>restricted</td>
<td></td>
<td>-5%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>restricted</td>
<td></td>
<td>-2%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>restricted</td>
<td>-5%</td>
<td></td>
<td>+2%</td>
</tr>
<tr>
<td></td>
<td>ad libitum</td>
<td>-4%</td>
<td></td>
<td>+4%</td>
</tr>
</tbody>
</table>

Literature

Discussion: feed efficiency

Pellets

- Digestibility of nutrients ↔ diet preparation technology
 - Cumulative effects of pelleting and lower particle size (Ball et al, 2012).

Impact of technological treatment on feed ingredients

- Limited information / process effects on nutritive value of ingredients (Bikker et al, 2013)

Liquid feed

- ? ↔ feed digestibility (Sol et al, 2015)

- Probably key effect of distribution system ingredients
 - Automatized liquid system, wet feeder,..
Discussion: general health parameters

Diet presentation

Stomach acidification

- Meal - ulcer scores (Quéméré et al, 1988; Wondra et al, 1995; Albar & Granier, 1999; Liermann et al, 2015)

- Automated liquid systems - ulcers (Quéméré et al, 1988; Dubroca et al, 2005) but no effect of wet feeder (Albar & Granier, 1999)

Hygiene of liquid feeding: benefits and drawbacks (Kamphues, 2013, Schenkel, 2013)

- Acidification, positive microorganisms, enzymes activity, anti-nutritional substances,..

- Negative microorganisms, toxins, ammonia, biogenic amines, gas,..
■ **Salmonella**

■ **Benefits of meal in *Salmonella* infections**
 - **Risk factors studies** (Vonnahme et al, 2006; Rajić et al, 2007; Corrégé et al, 2009)
 - **Some experimental studies** (Jørgensen et al, 1999; Dahl et al, 1999), but not consistent with (Kjærsgaard et al, 2001; Jørgensen et al, 2003)
 - **Pellets → neutral mucines ⇐ adhesion of *Salmonella* in intestine** (Hedemann et al, 2005; Betscher et al, 2010)

■ **Liquid feed**
 - ⇐ *salmonella* in risk factors studies (Dahl et al, 2000; Kranker et al, 2001; Fablet et al, 2003; Lo Fo Wong et al, 2004; Farzan et al, 2006; Corrégé et al, 2009)

■ **E. coli infections ?**

■ **Benefits of coarse wheat bran on piglet gut health in a K88 challenge** (Molist et al, 2010), but no impact of coarse meal (vs fine pellets) in *E. coli* survival and colonization in GIT (Von und zur Mühlen et al, 2015)
Conclusions

- Questions or additional information needed...
- Effect of process on nutritional value of individual ingredients…
- Accurate evaluation of impact of liquid feed on feed efficiency…
- Impact of coarse meal on piglet digestive health …
Aknowledgements

Special thanks to:

- L. Alibert, R. Granier, N. Lebas, D. Loiseau, R. Richard, A.S. Valable (IFIP), i.e colleagues and students in IFIP experimental centers at Romillé and Villefranche-de-Rouergue (France)

- T. Mener, F. Montagnon, J. Saulnier (Cooperl)

This study was financially supported by the French national program for agricultural development