Applying agroecological principles to analyse and to assess dairy sheep farming systems

V. Thénard¹, J.P. Choisis², M. A. Magne³,¹

¹ INRA-UMR1248 AGIR, F-31326 Castanet Tolosan, France,
² INRA-UMR1201 DYNAFOR, F-31326 Castanet Tolosan, France,
³ ENFA-UMR1248 AGIR, F-31326 Castanet Tolosan, France
Issue and objective of the study

- **Agroecology:** one way to address the challenge of agricultural systems adaptation to global change

- Some **agroecological principles** based on key ecological processes were proposed to (re)design sustainable farming systems (Altieri, 2002; Dumont et al., 2013; Dumont et al., 2014; Bonaudo et al., 2014)

- **Critical issue to supporting the agroecological transition:** How to turn these principles into operational levers for action?

 ✍️ Usable by farmers and advisors to describe and to assess the farms
A project with sheep farmers...

• A participatory approach with dairy sheep farmers and based on their practices

• This 10 farmers-group seeks to better use local forage resources and to reduce farm inputs. They define themselves as: “Economical and Locally grown Farms” (ELF)
... located in Southern France

- An ecological region: “Grands Causses” Natural Park ➔ stakes of native calcareous grassland preservation

- Agricultural area with drought season for cheese production (Roquefort PDO) ➔ stakes of farms sustainability
Questions

• How agroecological principles can be used to redesign and to assess dairy sheep farming systems mainly to improve their self-sufficiency at farm level?

• How describe and assess these types of farms to demonstrate their multi-performance?
Methodology

• Some steps Alternating of laboratory analysis and participative process with partners
Methodology

• First step: Two participative work sessions with farmers and advisors to identify levers for action for them to develop agroecological practices.

✦ A share understanding of three notions: “self-sufficiency farming”, “economical farming”, “local grow farming”.
Methodology

- Second step: Interviews and performance database analysis: 27 farmers interviewed in spring 2013
 - To link farmers practices to levers for action
 - To characterize the diversity of dairy sheep farms by identifying patterns of LFS
 - To assess their performances with agroecological properties: self-sufficiency-productivity-efficiency
Methodology

• Third step: Exchange with farmers and advisors about results, analyses and emergence of new questions

⇒ Purposes are improving “new” indicators well-adapted to assess their systems
Agroecological frame

- Agroecological principles turn into operational process for farmers

３ levers for action:
Managing diversity,
Renewing resources,
Limiting inputs
How describe Agroecological LFS

- 10 practices to describe the diversity of LFS

Managing diversity
1- Selection criteria for ewe lamb
2- Combination of grassland diversity for spring grazing
3- Specific grassland for summer grazing

Renewing resources
1- Reproduction management and drying off
2- Genetic Gain use
3- Increase species diversity and grassland types in farms

Limiting inputs
1- Combination milking period and grass growth
2- Purchase of concentrates for ewe diet
3- Outdoor or indoor management for ewe lamb
4- Supply in ewe diet during summer

- Four types of management
 - Intensive Farming: forage and supply
 - Economical & Locally Farming: natural pasture
 - Organic Farming: diversity and supply
 - Alternative Farming: diversity of resources
Agroecological LFS assessment

- According to the management ➔ farmers perform compromises to optimize Performances
Feed back & new questions

Give me Ammonium Nitrate Fertilizer!!!
I’ll produce Self-sufficiency!
Feed back & new questions

• How farmers manage self-sufficiency in the farm?

Self-sufficiency at farm level

What type of self-sufficiency?

How manage it? Which practices?

Feeding Self-sufficiency

Decisions Self-sufficiency/decisions sovereignty

Nitrogen Self-sufficiency

Energy Self-sufficiency

ENVIRONMENTAL IMPACTS

FARMING PRODUCTIVITY

ECONOMIC EFFICIENCY
Critical issues of self-sufficiency

• Farmers improve self-sufficiency in 4 ways:
 – Reducing feeding supplies
 ➔ trade-off among produced vs. purchased supply and milk production
 – Reducing or suppressing mineral Nitrogen and pesticides
 ➔ trade-off among organic farming, milk production level and purchased supplies
 – Limiting tilling and no-tilling
 ➔ trade-off among working time, fuel consumption and pesticides
 – Increasing diversity ressources
 ➔ trade-off among long-term grassland, tilling, and intensive pastures
Example of indicators to assess performances and discuss Trade-off

Trade-off between Nitrogen losses and Nitrogen efficiency at farm level

- Protein produced (kg) with 1 kg of Nitrogen introduced in the farm
- Nitrogen losses (kg) per area cultivated (ha)

$R^2 = 0.6434$
Discussion and perspectives

Contribution to:

– Define a conceptual framework to analyze LFS (practices and performances) in an agroecological perspective.
– Discuss self-sufficiency stakes with more attention including agronomic and environmental aspects.
– Produce a first stage to redesign and to assess livestock farming systems based on agroecological properties.

In further works:

– Integrate farm resilience as 4th performances of AE LFS.
– Improve this conceptual framework with farm advisors to support farmers’ agroecological transition
The authors thank all the farmers and partners who have contributed to this work. The project was supported financially by the research Projects ANR 09 – STRA 09 O2LA and ANR-13-AGRO-0006-01 TATA-BOX.