Genomics, sexed semen: changes in reproduction choices in French dairy herds

Pascale Le Mézec (1), Marion Benoit (2), Sophie Moureaux (1,4), Clotilde Patry (2,3)

(1) Institut de l’Élevage, 149, rue de Bercy, 75592 PARIS cedex 12
(2) Allice, 149, rue de Bercy, 75592 PARIS cedex 12
(3) EuroGenomics, 149, rue de Bercy, 75592 PARIS cedex 12
(4) INRA GABI, Domaine de Vilvert, 78352 JOUY-EN-JOSAS cedex
New innovative tools for genetics and reproduction strategies

Genomics:
- GEBV available for young ♂
- GEBV available for ♀ in 2011
- High reliability for all traits
- Possibility to increase genetic progress, especially for functional traits

Sexed semen:
- Success: 90% ♀ calves after sexed ♀ AI
- Possibility to select females on farm

For farmers: changes in herd management and reproduction strategies

In breeding programs: changes in genetic orientations, because of the genetic progress allowed for functional traits; changes in the selection designs for males and for females

Genomics, sexed semen: changes in reproduction choices in French dairy herds
66th EAAP Annual Meeting, Warsaw, Poland, 2015
The French dairy population for breeding and insemination

- Available bulls per year – Breeding programs

<table>
<thead>
<tr>
<th>Breed</th>
<th>2009 Progeny testing</th>
<th>2009 Proven bulls</th>
<th>2014 Genomic EBV without progeny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holstein</td>
<td>600</td>
<td>50</td>
<td>180</td>
</tr>
<tr>
<td>Montbéliarde</td>
<td>180</td>
<td>20</td>
<td>130</td>
</tr>
<tr>
<td>Normande</td>
<td>150</td>
<td>15</td>
<td>80</td>
</tr>
</tbody>
</table>

- Inseminations (AI) – Main dairy breeds

<table>
<thead>
<tr>
<th>Breed</th>
<th>2014 Number AI</th>
<th>Number of bulls >1000 AI</th>
<th>Number of inseminated cows and heifers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holstein</td>
<td>4,050,774</td>
<td>527</td>
<td>2,450,032</td>
</tr>
<tr>
<td>Montbéliarde</td>
<td>828,105</td>
<td>201</td>
<td>634,263</td>
</tr>
<tr>
<td>Normande</td>
<td>523,453</td>
<td>135</td>
<td>340,550</td>
</tr>
</tbody>
</table>
A reversal in the use of AI bulls

2014: 70% AI with genomic evaluated young bulls

<table>
<thead>
<tr>
<th>definition</th>
<th>use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical evaluation</td>
<td></td>
</tr>
<tr>
<td>Proven bulls (progeny tested)</td>
<td>Few bulls, thousands of AI</td>
</tr>
<tr>
<td>Bulls under progeny testing</td>
<td>Lot of bulls, 300 1st AI</td>
</tr>
<tr>
<td>Genomic evaluation</td>
<td></td>
</tr>
<tr>
<td>Young bulls with genomic EBV without daughters</td>
<td>Hundred of bulls, few AI</td>
</tr>
<tr>
<td>Proven bulls with genomic EBV</td>
<td>Dozen of bulls, medium use of AI</td>
</tr>
</tbody>
</table>

Genomics, sexed semen: changes in reproduction choices in French dairy herds
66th EAAP Annual Meeting, Warsaw, Poland, 2015
Two phases of bulls contributing to genetic progress

Genetic evolution of Holstein 1st AI - Functional traits and Net Merit

2009: 1st genomic evaluation = breeding values available for 4 years of waiting progeny testing dairy bulls. Large choice, higher precision for functional traits.

Since 2012: evaluated bulls come from genomic breeding programs. **Higher selection intensity, increased reliability.**
More genetic progress for functional traits

2004-2014 Genetic trends for Holstein 1st AI in France:

<table>
<thead>
<tr>
<th></th>
<th>2004-2009</th>
<th>1st genomic EBV</th>
<th>2009-2014</th>
<th>2004-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional traits</td>
<td>↗ +0.3 EBV STD</td>
<td>↗ ↗ +0.8 EBV STD</td>
<td></td>
<td>+1.1</td>
</tr>
<tr>
<td>Production traits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk</td>
<td>↗ +0.7 EBV STD</td>
<td>→ 0 EBV STD</td>
<td>↗ +0.5 EBV STD</td>
<td>+0.7</td>
</tr>
<tr>
<td>Protein Contents</td>
<td>↘ -0.2 EBV STD</td>
<td></td>
<td></td>
<td>+0.3</td>
</tr>
<tr>
<td>Type</td>
<td>↗ ↗ +1.0 EBV STD</td>
<td>↗ ↗ +1.3 EBV STD</td>
<td></td>
<td>+2.3</td>
</tr>
<tr>
<td>ISU = Total Merit index</td>
<td>↗ ↗ +1.3 EBV STD</td>
<td>↗ ↗ +1.5 EBV STD</td>
<td></td>
<td>+2.8</td>
</tr>
</tbody>
</table>

In 2012, the composition of the Total Merit Index (ISU) was updated with more weight for functional traits: \textbf{37.5\% ↗ 50\%} (Holstein)
Genotyping females

2014: 100,000 genotyped females on farms (cumulated)

Commercial dairy farms:
• More than 100,000 females with genomic EBV
• Expected 75,000 new genotyped females in 2015
• 96% under 18 months old
• About 6,000 farms tried genotyping
 Increasing ++

Breeding programs in dairy breeds:
• About 25,000 genotyping /year Stable =
New tools to put emphasis on females

• French breeders **ask and pay** genotyping for their **own use**

• Allowed by

 The availability of the **LD chip** since 2012
 The **low price**

• More tools for mating advices:

 A **early** genetic information for females

 A **complete** genetic information for females (for all traits)

 → highlight of the diversity of females

• To **sort** among females with different genetic profiles

And more services:

• Parentage testing

• Haplotype and mutation tests for genetic characteristics or defects
 (more than 20 tests / 4 breeds)
2010-2014: great increase of sexed semen

2014: 35% dairy heifers with ♀ sexed semen AI

2014: 91% female calves after female sexed AI in 2013 (/115,000 dairy calves)

Montbéliarde cows can sustain sexed AI due to the higher female fertility of the breed
Sexed semen: not only for genetic purposes

Reasons to use sexed semen with 90% hope of getting a female calf:

• To develop the herd without buying outside
• To sell females when good market opportunities
• To avoid heifers calving difficulties
• To avoid dairy males with a bad economic value
• To allow beef crossbreeding for a part of the herd

• To sort among a larger number of females
Combining sexed semen and genotyping: a new strategy in herds

Developing sexed semen → to sort among a larger number of females = more selection intensity

Genotyping → to sort among females with different genetic profiles = more reliable informations

→ to target appropriate bulls and females according to selection objectives at the herd level

2014: 35% dairy heifers with ♀ sexed semen AI

2014: 70% AI with genomic evaluated young bulls

2014: 100,000 genotyped females on farms

Genomics, sexed semen: changes in reproduction choices in French dairy herds
66th EAAP Annual Meeting, Warsaw, Poland, 2015
Perspectives in France

- Farmers and Breeders are **confident**: they massively **adopt innovations** in order to better match animals and their environment **according to their objectives** and in a **sustainable way**

- Genetic progress for functional traits is expected **soon** at the herd level

- Genomic selection will be extended to **other cattle breeds** (local and beef) and **other species** (dairy sheep and goats) in **2015-2016**
Thank you for your attention