Nutritional value of seaweed for ruminants

Martin Weisbjerg, Margarita Novoa-Garrido¹, Michael Roleda¹
Department of Animal Science, Aarhus University Foulum, Denmark.
¹NIBIO, Bodø, 8049 Bodø, Norway.
Background

• Seaweed is a large biomass source
• Use of seaweeds in animal feeding is not new
• Knowledge on feed value is very limited
Aim

- Study feed value for ruminants of seaweed, and variation between seaweed species and seasons in chemical composition and in vitro digestibility
Samples

- 8 seaweed species
- 2 seasons 2014, spring and autumn

Legumes and seaweeds as alternative protein for sheep (AltPro)

Bodø: 67°19'00" N, 14°28'60" E

66th EAAP ANNUAL MEETING - Warsaw, Poland 2015
Sample collection

• Hand picked
• 2 baths with sea water
 – eliminate sand, animals and fouling organisms
• 1 quick bath with 30% sea water
 – eliminate salt
• 1 quick bath on pure fresh water
 – eliminate more salt
Red seaweeds
Rhodophyta

Mastocarpus stellatus
Porphyra sp.

Palmaria palmata

Photo: M. Novoa-Garrido
Brown seaweeds
Ochrophyta

Pelvetia canaliculata

Alaria esculenta

Laminaria digitata

Photo: M. Novoa-Garrido, M.Y. Roleda
Green seaweeds
Clorophyta

Acrosiphonia sp.

Ulva sp.

Photo: M. Novoa-Garrido,
Analysis

• Samples freeze dried
• Ash (525 °C)
• Acid insoluble ash as measure for sand pollution (spring samples)
• N (Dumas) to estimate crude protein (x 6.25)
• Neutral Detergent Fibre (NDF) in Fibertech including sodium sulphite and residual ash correction
• In vitro organic matter digestibility (Tilley & Terry), rumen fluid from 3 dry rumen fistulated cows fed standard ration at maintenance (hay, straw and concentrate)
Composition of seaweeds

Acid insoluble ash only analysed in spring samples, however concentrations were low or below detection level

→ No sand pollution
Composition of seaweeds

<table>
<thead>
<tr>
<th>Specie</th>
<th>Season</th>
<th>DM (g/kg)</th>
<th>Ash (g/kg DM)</th>
<th>CP (g/kg DM)</th>
<th>NDF (g/kg DM)</th>
<th>OM_{other} (g/kg DM)</th>
<th>In vitro dig. (g/kg OM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown seaweeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaria</td>
<td>Spring</td>
<td>132</td>
<td>278</td>
<td>158</td>
<td>117</td>
<td>447</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>237</td>
<td>139</td>
<td>127</td>
<td>90</td>
<td>644</td>
<td>529</td>
</tr>
<tr>
<td>Laminaria</td>
<td>Spring</td>
<td>128</td>
<td>351</td>
<td>161</td>
<td>163</td>
<td>325</td>
<td>792</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>173</td>
<td>233</td>
<td>103</td>
<td>201</td>
<td>463</td>
<td>852</td>
</tr>
<tr>
<td>Pelvetia</td>
<td>Spring</td>
<td>229</td>
<td>219</td>
<td>105</td>
<td>293</td>
<td>383</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>244</td>
<td>210</td>
<td>75</td>
<td>280</td>
<td>435</td>
<td>333</td>
</tr>
<tr>
<td>Red seaweeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastocarpus</td>
<td>Spring</td>
<td>283</td>
<td>217</td>
<td>178</td>
<td>148</td>
<td>457</td>
<td>746</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>254</td>
<td>208</td>
<td>178</td>
<td>351</td>
<td>264</td>
<td>760</td>
</tr>
<tr>
<td>Palmaria</td>
<td>Spring</td>
<td>160</td>
<td>165</td>
<td>257</td>
<td>421</td>
<td>157</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>200</td>
<td>108</td>
<td>188</td>
<td>501</td>
<td>203</td>
<td>863</td>
</tr>
<tr>
<td>Porphyra</td>
<td>Spring</td>
<td>148</td>
<td>149</td>
<td>372</td>
<td>371</td>
<td>107</td>
<td>778</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>105</td>
<td>107</td>
<td>321</td>
<td>408</td>
<td>164</td>
<td>780</td>
</tr>
<tr>
<td>Green seaweeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrosiphonia</td>
<td>Spring</td>
<td>226</td>
<td>171</td>
<td>333</td>
<td>406</td>
<td>90</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td>Autumn</td>
<td>194</td>
<td>127</td>
<td>286</td>
<td>388</td>
<td>199</td>
<td>502</td>
</tr>
<tr>
<td>Ulva</td>
<td>Autumn</td>
<td>143</td>
<td>483</td>
<td>162</td>
<td>286</td>
<td>69</td>
<td>564</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species (n=8)</td>
<td></td>
<td>0.09</td>
<td><0.01</td>
<td><0.0001</td>
<td><0.01</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Season (n=2)</td>
<td></td>
<td>0.17</td>
<td>0.02</td>
<td><0.01</td>
<td>0.21</td>
<td><0.0001</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Composition of seaweeds
Digestibility of seaweeds

In vitro OM digestibility (g/kg OM)

Brown
Red
Green

EAAP ANNUAL MEETING - Warsaw, Poland 2015
Sampling and work continued in 2015

Preliminary spring data confirm 2014 effects and variation

Further work has been performed on protein degradability and digestibility, and on indigestible NDF
Conclusions

- Dry matter concentrations as high as for land grown forages
- Very high and variable ash (not sand)
- Low to very high protein concentration, higher in spring than in autumn
- Very low to very high organic matter digestibility
- Non NDF non protein organic matter high in brown seaweed
- Some seaweed species could be highly interesting as energy (some red and brown) and protein (some red and green) feed for ruminants
Thank you for your attention
In situ measures of protein availability in dairy cows

Tayyab, Novoa-Garrido, Roleda & Weisbjerg (2015)