Differences between cloned and non-cloned cows during the first lactation

F. Montazer-Torbati, M. Boutinaud
F. Jaffrezic, D. Lalöe
C. Richard, H. Jammes, J.P. Renard
E. Devinoy

eve.devinoy@jouy.inra.fr

INRA UMR1313, GABI, Jouy en Josas, France
Introduction

• The high variability in bovine milk production depends both on genetic and environmental factors

• Whereas genomic selection has contributed to largely improve milk production, mechanisms underlying the influence of the environment are mostly unknown

• They can be studied using cloned cows (obtained through nuclear transfer), presumed to have identical genomes
Experimental procedures

Prim’Holstein cows:
Cloned cows (n=9) and non cloned cows (n=9)

• Produced at similar period of the year

• Raised in similar conditions

Differences in weight at birth ** p=0.015

Differences in slopes of curves (p=0.0003)
Reproduction

- All cows were inseminated at the age of 1.5 year
- Eight cloned and 7 non-cloned cows delivered
- Body condition score at calving was lower (ΔBSC= -0.6) for cloned cows

\[* \ p=0.035 \]
Milk production during 200 DIM

- Milk yield was highly variable among animals but similar between the 2 groups
- Milk protein and fat contents were less variable in cloned cows

*** p=0.004
Milk composition around 67 DIM

- Lower protein, fat and lactose contents were observed in cloned cows

* p=0.04 ** p=0.01 * p=0.02
Mammary biopsy analyses

- Around 67 DIM, biopsies were collected from a rear quarter of the udder.
- Five biopsies in each group contained more than 60% of mammary epithelial tissue.
- They were from a sub-selection of cows which had a milk production representative of that observed among cows in each group.
RNA and milk synthesis

Levels of transcripts involved in most casein, fat or lactose syntheses were highly variable and in the average lower in cloned cows but not different between cloned and non-cloned cows, (except CSN1S2)

Variations in mRNA levels (ratio cloned versus non-cloned) * p=0.05
Milk somatic cell counts (SCC) in cloned cows

- Higher milk SCC, as an average ($p=0.1$)
- Increased frequency of high SCC ($p=0.09$)

- Higher apoptotic rate (TUNEL) *** $p=0.0007$

During lactation, a slow renewal of mammary cells is observed (0.3% per 24h)
Mammary specific DNA methylation profiles are likely to be maintained by DNMT1
DNA methylation - *DNMT1* mRNA

- *DNMT1* RNA levels were higher (p=0.05) in cloned cows
- *DNMT1* RNA levels were related to the apoptotic rates (TUNEL)

![Graph showing variations in mRNA levels (fold) and relative levels with significance levels marked ** p=0.01](image)

![Graph showing TUNEL, DNMT1, and DNMT3 with significant difference marked ** p=0.01](image)
Conclusions

- Lactation and milk production in cloned cows exhibit slight differences as compared to those of non-cloned cows.
- Higher somatic cell counts, higher apoptotic rates in relation with modifications of global DNA methylation profiles may explain such differences.
Thank you for your attention!

Acknowledgements

Collaborators:
- F. Montazer-Torbati, post doc
- M. Boutinaud, INRA UMR 1348, PEGASE
- N. Brun, INRA UMR 1313, GABI
- F. Jaffrezic, D. Laloe, INRA UMR 1313, GABI
- H. Jammes, J.P. Renard, INRA UMR 1198, BDR
- M. Nguyen, post doc
- C. Richard, V. Hallé, INRA UMR 1198
- A. Neveu, Valérie Gelin, INRA UCEA 1298

Fundings:
- French « Agence Nationale pour la Recherche »: Project « Epigrani »
- APIS-GENE
- INRA, department PHASE