Herd health challenges in high yielding dairy cow systems

Robert Smith

robsmith@liv.ac.uk
The “big three” diseases

Fertility

Lameness

Mastitis

Energy balance and body condition

Ruminal acidosis and abomasal displacement

Immunity

The right cow for the right environment / management
Yield and Fertility

<table>
<thead>
<tr>
<th>Herd Lactation Yield (litres)</th>
<th>Mean Calving Index (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td><6,000</td>
<td>425</td>
</tr>
<tr>
<td>6-8,000</td>
<td>420</td>
</tr>
<tr>
<td>8-10,000</td>
<td>419</td>
</tr>
<tr>
<td>10,000+</td>
<td>422</td>
</tr>
</tbody>
</table>

National Milk Records Holsteins UK n=200 per group randomly selected for year to 31/8/13.
Conventional lactation:
3 risk periods
Extended lactation:
2 risk periods
Less milk /cow /year
Persistent lactation:
3 x day milking
Lower peak?
Genetics?

How is fertility related to yield?
Energy Demand

Run a marathon

1.5-2 x maintenance for one day

Tour De France

3-4 x maintenance for 3 weeks

Cow giving 50 litres

4-5 x maintenance for 4 months
(and conceive a new calf)
Lactation Energy Requirements

Negative energy balance

Positive energy balance

Dry Matter Intake (DMI)

Milk Yield

Body Weight

Calving Day 0

Time

Drying off 305+ days

~ 8 weeks
Energy Requirements

Maintenance At drying off
High yield
Low yield

ME requirements (MJ/day)

- 190 MJ
- 95 MJ
- 315 MJ
- 65 MJ

50 lts/day
25 lts/day
Energy density M/D

- Energy per unit of diet (Metabolisable Energy / kg Dry Matter (DM))

- For high yielding Holstein (315MJ/24kg) ≈ 13 MJ / kg DM
 - Dry Matter Intake is limiting factor

- For dry cow (95MJ / 10kg) ≈ <10 MJ/kg DM
 - DM Intake needs to be maintained as high as possible
 - 12-14 Kg / day?
Dietary Fibre and Dry matter intake

Modelling the Adequacy of Dietary Fiber in Dairy Cows Based on the Responses of Ruminal pH and Milk Fat Production to Composition of the Diet. Q. Zebeli, J. Dijkstra, M. Tafaj, H. Steingass, B.N. Ametaj, W. Drochner
Modelling the Adequacy of Dietary Fiber in Dairy Cows Based on the Responses of Ruminal pH and Milk Fat Production to Composition of the Diet. Q. Zebeli, J. Dijkstra, M. Tafaj, H. Steingass, B.N. Ametaj, W. Drochner
Modelling the Adequacy of Dietary Fiber in Dairy Cows Based on the Responses of Ruminal pH and Milk Fat Production to Composition of the Diet. Q. Zebeli, J. Dijkstra, M. Tafaj, H. Steingass, B.N. Ametaj, W. Drochner
After calving

- Energy requirements + 300%
- Glucose requirements + 270%
- Amino acid requirements + 200%

Courtesy of Wyn Morris ForFarmers
Energy Requirements

- **Maintenance**
 - ME requirements (MJ/day): 65

- **At drying off**
 - ME requirements (MJ/day): 65

- **High yield**
 - ME requirements (MJ/day): 250
 - 5 x M = 315 MJ

- **Low yield**
 - ME requirements (MJ/day): 125
 - 3 x M = 190 MJ

25 MJ = 0.75 Kg body weight gain/day
Fat cows lose more body condition after calving

1980-1993
\[y = -0.62x + 1.55 \]
\[R^2 = 0.82 \]

2000-2006
\[y = -0.55x + 1.15 \]
\[R^2 = 0.79 \]
Fat cows lose more body condition after calving

BCS Change

BCS at Calving

Garnsworthy
Association between BCS and Lameness

• Which comes first?

• Lim et al. Preventive Veterinary Medicine 118 (2015) 370

• BCS at calving <2.25 or BCS loss of 1 score or more after calving
 – More likely to become lame
 – Less likely to stop being lame

• Increase in BCS after calving
 – More likely to stop being lame
How common is lameness?

Prevalence and risk factors for lameness in insulated free stall barns in Finland
Sarjokari et al Livestock Science, Volume 156, Issues 1–3, 2013, 44 - 52
BCS and Lameness – digital cushion fat pad

BCS, digital cushion thickness and lameness

Digital cushion thickness by body condition score (BCS)

Bicalho & Oikonomou (2013) Livestock Science 56 96

Digital cushion thickness at dry-off for cows that were:
No lesion = No claw horn lesions at dry-off or next lactation
SU = Solar Ulcer at dry-off or next lactation
WLD - White Line Lesions at dry-off or next lactation
Will technology solve the fertility problem?

<table>
<thead>
<tr>
<th>Detection method</th>
<th>% of possible heats identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm staff (alone)</td>
<td>56</td>
</tr>
<tr>
<td>Heattime™</td>
<td>59</td>
</tr>
</tbody>
</table>

~40% heats not being detected by any one system

Low Body Condition

High Yield (over 55kg/day)

Lameness

Holman A, Thompson J, Routly JE, Cameron J, Jones DN, Grove-White D, Smith RF, Dobson H.

BCS change and 1st service Pregnancy rate

![Bar chart showing BCS change and pregnancy rate](image)
Lame cows have first CL and first oestrus later

<table>
<thead>
<tr>
<th></th>
<th>‘Normal’</th>
<th>Lameness</th>
</tr>
</thead>
<tbody>
<tr>
<td>First post partum luteal activity</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>(days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First post partum oestrus</td>
<td>60</td>
<td>84</td>
</tr>
<tr>
<td>(days)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific sexual behaviours are affected

- Mounting activity
- Stand to be mounted
- Sniffing vulva
- Chin resting
- Flehmen

Frequency

- Normal
- Moderately Lame
- Severely Lame

Walker et al. (2008) Hormones and Behavior 53 493

* = P < 0.05
Diseases interact with fertility

<table>
<thead>
<tr>
<th>Condition</th>
<th>SCC 100K+</th>
<th>Lame</th>
<th>SCC 100K+ + Lame</th>
<th>Ovulate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% ovulate</td>
<td>100% ovulate</td>
<td>78% ovulate</td>
<td>44% ovulate</td>
<td></td>
</tr>
</tbody>
</table>

Morris, Smith and Dobson
Do we need to worry about the physiology? We have pharmaceuticals!

Lame cows respond poorly to progesterone synchronisation regimes

McNally et al, Theriogenology (2014) 82 1263
Don’t breed the cow out of the building?
Farmers report hock lesions to milk purchaser (and obtain a better price)
Reducing antibiotic use in animals

- Arla gården standards
- Improve immune response
 - Reduce “stress”
 - Nutrition
 - Genetics
 - Somatic Cell Count
 - Immune response
- Identify and remove risk factors for disease
 - Environment
Thoughts for the future

• Understanding animal response to chronic stimuli
• Treatment vs prevention of disease
• Early detection
 – of lameness
 – of body condition loss
• What phenotypes can be accurately measured?
• Fertility as a “catch all” welfare monitor
 – (see Garcia et al. de Vries et al, Nyman et al, 2011)
Cattle welfare is under scrutiny

- Food security will drive the development of farming systems
 - Cost and availability of food are key issues, but
 - A proportion of consumers are influenced by perceptions of animal welfare in different systems.
- We need to manage animal genotype and environment interactions to meet consumer expectations.