Microstructure and function of the thyroid gland may relate to feed efficiency in the bovine

J. Ormon1, S. Bourgon1, J. Munro1, A. Macdonald2, S. Lam2, S. Miller2,3, Y. Montanholi1

1DALHOUSSIE UNIVERSITY
2UNIVERSITY OF GUELPH
3agresearch
BIOLOGICAL BASIS OF FEED EFFICIENCY
Outline

- Thyroid hormones: simple examples
 - Oestrous detection
 - Liver abscess detection
 - Feed efficiency & spot sampling

- Thyroid hormones: complex examples
 - Circadian patterns (T3 & T4)
 - Other organs and tissue structure

44 ± 12 g
"Simple examples"

- Thyroid hormones: simple examples
 - Oestrous detection
 - Liver abscess detection
 - Feed efficiency & spot sampling

1 + 1 = 2
Oestrous detection

- T3: Major indicator of oestrous

- Logistic regression
- 92% of certainty

Crane et al (2016), Reproduction in Domestic Animals, in press
Biological characterization of the estrous cycle in lactating Holstein cows

Y. Montanholi1, S. Bourgon1, A. Macdonald2, P. Park2, S. Lam2, M. Kozak2, B. Potvin2, K. Colliver2, L. Haas2, A. Rocha2, S. Miller2,3
Liver abscess detection

- **T4: indicator of liver abscess**

- 20% reduction in abscessed samples

- **Poor performance: Reduced FG & ADG**

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Abscessed</th>
<th>Normal</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3 (nmol/L)</td>
<td>2.77</td>
<td>2.80</td>
<td>0.84</td>
</tr>
<tr>
<td>T4 (nmol/L)</td>
<td>89.43</td>
<td>102.0</td>
<td>0.01</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>5.14</td>
<td>6.09</td>
<td>0.03</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>2.43</td>
<td>3.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>32.11</td>
<td>36.35</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Macdonald et al (2016), Veterinary Record Open, in press
Feed efficiency & spot sampling

- Feed efficiency determination: residual feed intake (RFI)

Koch et al 1963:

EFFICIENCY OF FEED USE IN BEEF CATTLE

Robert M. Koch, L. A. Swiger, Doyle Chambers and K. E. Gregory

University of Nebraska, Oklahoma State University and United States Department of Agriculture

Feed intake = BW + BW_{variation}
Feed efficiency & spot sampling

- RFI determination: growing cattle

Feed intake = BW + Bw\text{variation} + Backfat + Marbling + Rump_fat + Ribeye

Montanholi et al. (2009), Livestock Science, 125:22-30.
Feed efficiency & spot sampling

- RFI determination: growing and pregnant cattle

\[\text{Feed intake} = \text{BW} + B_{\text{w variation}} + \text{Backfat} + \text{Marbling} + \text{Rump_fat} + \text{Ribeye} + \text{Age} + \text{Gestation} \]

Feed efficiency & spot sampling

- RFI and T3: grass-fed replacement heifers

<table>
<thead>
<tr>
<th>Traits</th>
<th>Efficient</th>
<th>Inefficient</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFI (kg/d)</td>
<td>-0.83</td>
<td>+0.85</td>
<td>0.01</td>
</tr>
<tr>
<td>Feed to Gain</td>
<td>7.92</td>
<td>9.70</td>
<td>0.01</td>
</tr>
<tr>
<td>ADG (kg/d)</td>
<td>0.71</td>
<td>0.74</td>
<td>0.35</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>339</td>
<td>349</td>
<td>0.25</td>
</tr>
<tr>
<td>Rib-eye (cm²)</td>
<td>48</td>
<td>49</td>
<td>0.16</td>
</tr>
<tr>
<td>Backfat (mm)</td>
<td>2.31</td>
<td>2.35</td>
<td>0.82</td>
</tr>
</tbody>
</table>

120 d on test, every 28 d
Feed efficiency & spot sampling

- RFI and T3: grass-fed replacement heifers

<table>
<thead>
<tr>
<th>Traits</th>
<th>Value 1</th>
<th>Value 2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3 (nmol/L)</td>
<td>1.81</td>
<td>1.90</td>
<td>0.06</td>
</tr>
<tr>
<td>Mean cell hemoglobin (pg)</td>
<td>16.0</td>
<td>16.4</td>
<td>0.01</td>
</tr>
<tr>
<td>Red blood cell count (10^6 cells/μL)</td>
<td>7.65</td>
<td>7.67</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Feed efficiency & spot sampling

- RFI and T3: grain-fed young bulls on-farm

- No difference: T4

Feed efficiency & spot sampling

- Transportation and non-routine handling effects

<table>
<thead>
<tr>
<th>Analyte</th>
<th>On-farm</th>
<th>Slaughter</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatine kinase (U/L)</td>
<td>100</td>
<td>304</td>
<td>0.01</td>
</tr>
<tr>
<td>Cortisol (ng/mL)</td>
<td>24.3</td>
<td>49.3</td>
<td>0.03</td>
</tr>
<tr>
<td>IGF-1 (ng/mL)</td>
<td>485</td>
<td>396</td>
<td>0.02</td>
</tr>
<tr>
<td>Osmolality (mmol/L)</td>
<td>285</td>
<td>296</td>
<td>0.01</td>
</tr>
<tr>
<td>T3 (nmol/L)</td>
<td>2.66</td>
<td>2.78</td>
<td>0.98</td>
</tr>
<tr>
<td>T4 (nmol/L)</td>
<td>84.6</td>
<td>97.8</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Complex examples

- **Thyroid hormones: complex examples**
 - Circadian patterns (T3 & T4)
 - Other organs and tissue structure
Circadian patterns

- T3 and T4: physiological state and feed efficiency

puberty → early pregnancy → late pregnancy
Circadian patterns

- T3 by physiological state

![Graph showing T3 levels by physiological state](image)
Circadian patterns

- T4 by physiological state

![Graph showing T4 levels over time for different physiological states.](image)
Circadian patterns

- Feed efficiency & T3 by physiological state

![Graph showing T3 levels over the day with pubertal stages labeled as 'a' and 'b'.]
Circadian patterns

- Feed efficiency & T3 by physiological state

Graphs:
- Time of the day (8:00 to 5:00)
- T3 (nmol/L) range from 1.0 to 2.2
- Comparison between early pregnancy and late pregnancy
- markers a and b indicate different time points or conditions
Circadian patterns

- Feed efficiency & T4 by physiological state

![Graph showing T4 levels over time, with peak around 20:00 and dip at 5:00.]

PUBERTY
Circadian patterns

- Feed efficiency & T4 by physiological state

![Graph showing T4 levels over time for early and late pregnancy.](Image)
Circadian patterns

- T3 & T4: oxygen consumption

LATE PREGNANCY
Circadian patterns

- T3: oxygen consumption
Circadian patterns

- T3 and oxygen consumption

![Graph showing circadian patterns of oxygen consumption and T3 levels in late pregnancy.](image-url)
Relationships with liver O_2
Relationships with liver O_2
Relationships with liver O_2

- T3 and oxygen consumption

LATE PREGNANCY

O_2

2.54 μmol/min/g DM

1.57 μmol/min/g DM

T3

T4

0.46

0.44
Relationships with radiant heat

- Infrared thermography
Relationships with radiant heat

- T4 and thermographs

\[T4 - 0.36 \]
\[T4 - 0.29 \]
Other organs & tissue structure

TSH

T4 T3

T4

T3

Heart

Cow

Other organs

Tissue structure
Other organs & tissue structure

- Heart physiology & structure research

Best Oral Presentation
awarded to

Jasper Munro

at the 66th Annual Meeting of the European Association for Animal Production in Warsaw, Poland,
August 31st - 4 September 2015

Philippe Chemineau
President of the EAAP
Other organs & tissue structure

- The feed inefficient cattle heart

Structure:
- Lower R-ventricle weight
- Thinner R-ventricle wall
- Larger myocyte width

Function:
- Increased resting heart rate
- Diminished stroke volume
- Larger blood volume

Other organs & tissue structure

- Thyroid hormones & heart structure and function

T3

TSH

Myocyte width

Sarcomere length

0.66

0.65

0.42

-0.62

-0.38

Blood volume

Time after administration (min)

Blood volume

1000x
Other organs & tissue structure

- Thyroid hormones and heart rate overnight

Munro et al (2016), Animal, 1:1-9.
Other organs & tissue structure

- Thyroid hormones & HR during transport and slaughter

- TSH: -0.72 ns
- T3: ns ns
- T4: ns 0.89 ns
Other organs & tissue structure

- Thyroid hormones & blood cells

![Diagram showing thyroid hormones and blood cells with values:

- T3: 0.42
- T4: 0.40
- TSH: 0.27
- TSH: -0.31

Red cells and white cells with T3 and T4 connections.]

- T3: 0.42
- T4: 0.40
- TSH: 0.27
- TSH: -0.31
Other organs & tissue structure
Other organs & tissue structure

Other organs & tissue structure

- Thyroid hormones & sexual development

Higher pixel intensity

Other organs & tissue structure

- Thyroid hormones & sexual development

Bourgon et al (2016),AAAA.
Other organs & tissue structure

- Thyroid hormones & semen quality

JOURNAL OF DAIRY SCIENCE, 1961, 44:1537-1543

REPRODUCTIVE CAPACITY OF DAIRY BULLS. I. TECHNIQUE FOR DIRECT MEASUREMENT OF GONADAL AND EXTRA-GONADAL SPERM RESERVES

R. P. AMANN AND J. O. ALMQUIST
Dairy Breeding Research Center, Department of Dairy Science
The Pennsylvania State University, University Park

Spermatogenesis

\[\sum T_3 + T_4 = 0.28 + 0.42 = 0.7 \]

70 days
Other organs & tissue structure
Other organs & tissue structure

- Pituitary gland histomorphometry

Anterior pituitary

Posterior pituitary

Mucoid wedge

Pars intermedia
Other organs & tissue structure

- Pituitary gland histomorphometry

Pituitary gland histomorphometry

- **Anterior pituitary**
 - 68%
 - P = 0.04

- **Posterior pituitary**
 - 17%
 - P = 0.02

Acidophils Basophils Immunostaining

62% 12%
Other organs & tissue structure

- **Thyroid gland histomorphometry**

- **Cell metrics:**
 - Cell area & perimeter
 - Nuclei area & perimeter
 - Cell height

- **Follicle average size**
Other organs & tissue structure

- Thyroid gland histomorphometry

- TSH (0.57)
 - Nuclei area (NS)
 - Follicle size (NS)

- T4 (0.36)
 - Cell area (0.55)
 - Nuclei area (NS)

- T3
 - Cell/nuclei (0.57)

Images:
- 1000x: Nuclei area
- 1000x: Cell area
- 40x: Follicle size
Other organs & tissue structure

- Thyroid histomorphometry and hormones by RFI groups

<table>
<thead>
<tr>
<th>Traits</th>
<th>Group 1</th>
<th>Group 2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3 (nmol/L)</td>
<td>2.87</td>
<td>3.19</td>
<td>0.04</td>
</tr>
<tr>
<td>T4 (nmol/L)</td>
<td>95.0</td>
<td>115</td>
<td>0.01</td>
</tr>
<tr>
<td>TSH (ng/mL)</td>
<td>5.74</td>
<td>3.75</td>
<td>0.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traits</th>
<th>Group 1</th>
<th>Group 2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follicle size (μm²)</td>
<td>4440</td>
<td>4211</td>
<td>0.04</td>
</tr>
<tr>
<td>Cell size (μm²)</td>
<td>69.5</td>
<td>65.5</td>
<td>0.09</td>
</tr>
<tr>
<td>Nuclei size (μm²)</td>
<td>21.1</td>
<td>19.6</td>
<td>0.01</td>
</tr>
<tr>
<td>Cell : nuclei ratio</td>
<td>3.29</td>
<td>3.35</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Other organs & tissue structure

- More on histomorphometry and feed efficiency...

<table>
<thead>
<tr>
<th></th>
<th>Duodenum</th>
<th>Ileum</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duodenum</td>
<td>30.3</td>
<td>33.2</td>
<td>0.04</td>
</tr>
<tr>
<td>Ileum</td>
<td>33.6</td>
<td>37.2</td>
<td>0.01</td>
</tr>
<tr>
<td>Size of the cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duodenum</td>
<td>94.6</td>
<td>94.7</td>
<td>0.98</td>
</tr>
<tr>
<td>Ileum</td>
<td>83.5</td>
<td>83.7</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Influence of feed efficiency and physiological state on rumen VFA and microbial profiles in cattle

S Lam¹, J Munro², J Cant¹, L Guan³, M Steele³, F Schenkel¹, S Miller¹,⁴, Y Montanholi²
Remarks

- Productive performance
- Reproduction
- Welfare
- Health

➢ Support to other disciplines

"REFINED" PHENOTYPES

Multi-stream & Multidisciplinary Technologies

PHYSIOLOGY

HUSBANDRY