Animal health and GHG gas intensity: the paradox of periparturient parasitism

Jos Houdijk¹,², Bert Tolkamp², John Rooke³ and Mike Hutchings²

¹Monogastric Science Research Centre, SRUC
²Disease Systems, SRUC
³Future Farming Systems, SRUC

Leading the way in Agriculture and Rural Research, Education and Consulting
Background

• Pathogen exposure reduces feed intake
 - Parasitism would reduce GHG output
 - Does parasitism affect GHG yield?

• Pathogen exposure reduces performance
 - Parasitism may increase nutrient input to obtain similar production output

• Here, we assessed the impact of ewe parasitism on GHG intensity for lamb production
Materials and Methods

- **Experimental treatments (n=16)**
 - Control
 - sham infection (water)
 - ad libitum fed pelleted lucerne throughout
 - Parasitised
 - Teladorsagia circumcincta (abomasal nematode)
 - trickle infection (10,000 L₃, Mon-Wed-Fri)
 - ad libitum fed pelleted lucerne throughout
 - Restricted
 - sham infection (water)
 - fed pelleted lucerne at 80% of control during lactation
Materials and Methods

• Periparturient observations (n=16)
 - From d_{-28} to d_{30} (d_0 is lambing)
 - Weekly body weight
 - Twice weekly feed refusals
 - Total tract digestibility (d_{28} to d_{30})

• Respiration chambers (n=8)
 - From d_{30} to d_{36}
 • 3 days adaptation
 • 3 days measurements
 (last day used in calculations)
Materials and Methods

- Respiration chambers
 - Enteric GHG production
 - Methane
 - Carbon dioxide

- Total tract nutrient digestibility
 - Organic matter (dOMI)
 - Volatile solids
 - Manure methane
 - Nitrogen
 - N excretion
 - Manure nitrous oxide
Ewe performance during lactation

• Parasitism reduced performance
 1. Anorexia
 2. Reduced litter weight gain
 3. Increased body weight loss
Enteric Methane

- Parasitism and enteric CH$_4$
 1. Reduced production
 2. No effect on yield per kg DMI
 3. Increased yield per kg dOMI
Enteric Carbon dioxide

• Parasitism and enteric CO₂
 1. Reduced production (trend)
 2. No effect on yield per kg DMI
 3. Increased yield per kg dDMI
Manure Methane

- Parasitism and manure CH$_4$
 1. No effect on production
 2. Increased yield per kg DMI
 3. Increased yield per kg dOMI
Manure Nitrous oxide

- Parasitism and manure N$_2$O
 1. No effect on production
 2. Increased yield per kg DMI
 3. Increased yield per kg dOMI
GHG combined

- Parasitism increases combined GHG yield per kg dOMI
Feed need to wean lambs at 25 kg

- Parasitism and feed need to target
 1. Similar to weaning
 2. Greater to restore BW
 3. Total feed need drives GHG intensity for lamb production
Feed conversion ratio and GWP

• Ewe parasitism
 1. Increased FCR
 2. Increased GWP/kg lamb weight gain
Discussion

• Parasitism reduces productivity
 - ewes will require longer feeding to reach similar weaning lamb body weight and compensate for higher rate of maternal weight loss
 - this increased feed requirement will increase total GHG output during production cycle

• Parasitism reduces feed value
 - ewes will require longer feeding and rely on body reserves to reach similar dOM intake (proxy for metabolizable energy intake)
 - increased GHG from extra feed requirements: ~16%
 - increased GHG yield per kg dOMI: ~22%
Conclusion

• Periparturient parasitism increases methane intensity for lamb production
 - Increased feed conversion ratio
 - Anorexia
 - Reduction in nutritional value

• Animal health impacts on GHG intensity
 - Quantify impacts through feed conversion ratio
 - Consider additional direct effects
Acknowledgements

• Funding
 - Scottish Government

• Technical assistance
 - Dave Anderson, Terry McHale, Jo Donbavand
 - Ross McGinn, Dave Ross, Lesley Deans

• GHG intensity calculations
 - Michael Macleod, Eileen Wall