Effects of substitution of kikuyu forage by oat silage on milk production and quality in dairy cows

S. Yuste¹, W. Sánchez¹,², A. de Vega¹ and J. A. Guada¹

¹Instituto Agroalimentario de Aragón, Universidad de Zaragoza-CITA, Miguel Servet 177, 50013 Zaragoza, Spain

² Instituto Nacional de Innovación y Transferencias en Tecnología Agropecuaria, INTA-CR, Sabana Sur, de Canal 7 300 m Sur, Antiguo Colegio La Salle-MAG, 382 Centro Colón, Sabana Sur, San José, Costa Rica
Introduction

Milk production and quality

Breed

Feed

Pasture and forage intake

Dairy grazing systems
Introduction

African star (*Cynodon nlemfuensis*)

Kikuyu (*Kikuyocloa clandestina*)

Ryegrass (*Lolium sp.*)

Rotational grazing systems

2350 m.a.s.l

18.8 % CP

14.2 % DM

Kikuyu (*Kikuyocloa clandestina*)
Introduction

Energy requirements are not covered

→ Concentrate and forage supplementation

High-quality forage supplementation

Milk production

Usual in the highlands of Costa Rica

Mature kikuyu forage → Oat silage??

Low-quality forage supplementation
Objectives

To determine the effects of supplementation with oat silage or kikuyu forage on

• kikuyu pasture dry matter intake
• milk production and quality
• urinary excretion of purine derivatives
Materials and methods

Group A
- Jersey * Holstein (50:50)
- 350 kg
- 12th week of lactation

Group B

Period 1
- Oat silage
- 1.5 kg DM/day
- 7d adaptation
- 5d measurements

At milking (4 and 16 h)
- 0.9 kg DM/day Citrocón
- 1.75-3.5 kg DM/day Vapp Feed
+ Kikuyu pasture
¿DMI?

Period 2
- Kikuyu forage
- Oat silage
- 1.5 kg DM/day
- 7d adaptation
- 5d measurements
Materials and methods

Sample Analysis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kikuyu pasture, kikuyu forage, oat silage, Citrocón and Vapp Feed</td>
<td>DM, CP, OM, NDF, ADF, NE_L</td>
</tr>
<tr>
<td>Milk</td>
<td>Fat, protein, lactose</td>
</tr>
<tr>
<td>Urine</td>
<td>Purine derivatives</td>
</tr>
</tbody>
</table>

Statistical analysis: PROC GLM of SAS v. 9.2

Model: \(y = \mu + T_i + P_j + A_{k(ij)} \)

- \(T_i \) = fixed effect of treatment (oat silage or kikuyu forage)
- \(P_j \) = fixed effect of period of supplementation
- \(A_{k(ij)} \) = random effect of animal nested within treatment and period
Materials and methods

DM intake estimation of kikuyu pasture

Requirements (NRC, 2001):

✓ Maintenance: 0.080 Mcal NE\(_L\)/kg BW\(^{0.75}\)
✓ Milk production:
 \[\text{NE}_L \text{ (Mcal/kg)} = 0.0929 \times \% \text{ Fat} + 0.057 \times \% \text{ Protein} + 0.0395 \times \% \text{ Lactose} \]
✓ No changes in BW assumed (INRA, 1988)

\[\text{NE}_L \text{ Requirements (per day)} = \text{NE}_L \text{ concentrates} + \text{NE}_L \text{ forages} + \text{NE}_L \text{ kikuyu pasture} \]

Daily NE\(_L\) requirements from pasture

\[\text{NE}_L \text{ content of grazed kikuyu} = \text{Intake of kikuyu pasture (DM)} \]
Results

Pasture intake

<table>
<thead>
<tr>
<th></th>
<th>Oat silage</th>
<th>Kikuyu forage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kikuyu pasture intake (kg DM/cow/day)</td>
<td>5.96</td>
<td>5.65</td>
</tr>
</tbody>
</table>

Animal effect (P<0.05)

Milk composition

<table>
<thead>
<tr>
<th></th>
<th>Oat silage</th>
<th>Kikuyu forage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat (%)</td>
<td>4.44</td>
<td>4.58</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>3.56</td>
<td>3.54</td>
</tr>
<tr>
<td>Lactose (%)</td>
<td>4.75</td>
<td>4.74</td>
</tr>
</tbody>
</table>

Animal effect (P<0.05)
Results

Milk production

Animal effect and grazing period (P > 0.1)

Daily production of protein and lactose

Animal effect and grazing period (P > 0.1)
Results

Purine derivatives

- Oat silage
- Kikuyu forage

Animal effect (P > 0.1)

\[\approx \text{Metabolizable fermentable energy} \]

\[\text{Xanthine} \rightarrow \text{Degradation to Uric acid Allantoin} \]

\[\text{Hypoxanthine} \]
• Substitution of kikuyu forage by oat silage seems to be an advisable practice for dairy milk producers in the highlands of Costa Rica.
Thank you for your attention
Chemical composition and estimated NE_L of the feedstuffs

<table>
<thead>
<tr>
<th></th>
<th>OM</th>
<th>CP</th>
<th>NDF</th>
<th>ADF</th>
<th>EN_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grazed kikuyu</td>
<td>87.67</td>
<td>21.47</td>
<td>56.53</td>
<td>25.82</td>
<td>1.61</td>
</tr>
<tr>
<td>Oat silage</td>
<td>89.34</td>
<td>7.18</td>
<td>63.56</td>
<td>43.81</td>
<td>1.05</td>
</tr>
<tr>
<td>Kikuyu forage</td>
<td>89.38</td>
<td>7.52</td>
<td>69.53</td>
<td>36.93</td>
<td>1.14</td>
</tr>
<tr>
<td>Vapp Feed concentrate</td>
<td>94.15</td>
<td>19.70</td>
<td>12.34</td>
<td>5.67</td>
<td>2.12</td>
</tr>
<tr>
<td>Citrocnón concentrate</td>
<td>93.32</td>
<td>6.54</td>
<td>19.70</td>
<td>18.29</td>
<td>1.76</td>
</tr>
<tr>
<td>Period 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grazed kikuyu</td>
<td>86.42</td>
<td>25.20</td>
<td>53.01</td>
<td>24.71</td>
<td>1.63</td>
</tr>
<tr>
<td>Oat silage</td>
<td>86.15</td>
<td>8.26</td>
<td>64.38</td>
<td>42.22</td>
<td>1.08</td>
</tr>
<tr>
<td>Kikuyu forage</td>
<td>86.95</td>
<td>7.14</td>
<td>65.42</td>
<td>49.96</td>
<td>1.07</td>
</tr>
<tr>
<td>Vapp Feed concentrate</td>
<td>93.97</td>
<td>19.55</td>
<td>12.03</td>
<td>5.58</td>
<td>2.10</td>
</tr>
<tr>
<td>Citrocnón concentrate</td>
<td>93.45</td>
<td>6.51</td>
<td>19.02</td>
<td>18.15</td>
<td>1.69</td>
</tr>
</tbody>
</table>

OM: organic matter; CP: crude protein; NDF: neutral detergent fibre; ADF: acid detergent fibre; ADL: acid detergent lignin; EE: ether extract; NE_L: net energy for lactation (Mcal/kg dry matter), estimated according to the NRC (2001); n.d.: not determined